Paper ID | L.7.3 | ||
Paper Title | Multi-Product Dynamic Pricing in High-Dimensions with Heterogeneous Price Sensitivity | ||
Authors | Adel Javanmard, Hamid Nazerzadeh, Simeng Shao, University of Southern California, United States | ||
Session | L.7: High-dimensional Statistics | ||
Presentation | Lecture | ||
Track | Statistics and Learning Theory | ||
Manuscript | Click here to download the manuscript | ||
Virtual Presentation | Click here to watch in the Virtual Symposium | ||
Abstract | We consider the problem of multi-product dynamic pricing, in a contextual setting, for a seller of differentiated products. In this environment, the customers arrive over time and products are described by high-dimensional feature vectors. Each customer chooses a product according to the widely used Multinomial Logit (MNL) choice model and her utility depends on the product features as well as the prices offered. The seller a-priori does not know the parameters of the choice model but can learn them through interactions with customers. The seller's goal is to design a pricing policy that maximizes her cumulative revenue. This model is motivated by online marketplaces such as Airbnb platform and online advertising. We measure the performance of a pricing policy in terms of regret, which is the expected revenue loss with respect to a clairvoyant policy that knows the parameters of the choice model in advance and always sets the revenue-maximizing prices. We propose a pricing policy, named M3P, that achieves a $T$-period regret of $O(\log(Td) ( \sqrt{T}+ d\log(T)))$ under heterogeneous price sensitivity for products with features of dimension $d$. We also use tools from information theory to prove that no policy can achieve worst-case $T$-regret better than $\Omega(\sqrt{T})$. |
Plan Ahead
2021 IEEE International Symposium on Information Theory
11-16 July 2021 | Melbourne, Victoria, Australia