Paper ID | Q.1.4 | ||
Paper Title | Infinite-fold enhancement in communications capacity using pre-shared entanglement | ||
Authors | Saikat Guha, Quntao Zhuang, Boulat Bash, University of Arizona, United States | ||
Session | Q.1: Quantum Communication | ||
Presentation | Lecture | ||
Track | Quantum Systems, Codes, and Information | ||
Manuscript | Click here to download the manuscript | ||
Virtual Presentation | Click here to watch in the Virtual Symposium | ||
Abstract | Pre-shared entanglement can significantly boost communication rates in the regime of high thermal noise, and a low-brightness transmitter. In this regime, the ratio between the entanglement-assisted capacity and the Holevo capacity, the maximum reliable-communication rate permitted by quantum mechanics without any pre-shared entanglement as a resource, is known to scale as $\log(1/N_S)$, where $N_S \ll 1$ is the mean transmitted photon number per mode. This is especially promising in enabling a large boost to radio-frequency communications in the weak-transmit-power regime, by exploiting pre-shared optical-frequency entanglement, e.g., distributed by the quantum internet. In this paper, we propose a structured design of a quantum transmitter and receiver that leverages continuous-variable pre-shared entanglement from a downconversion source, which can harness this purported infinite-fold capacity enhancement---a problem that has been open for over a decade. Its implication to the breaking of the well-known {\em square-root law} for covert communications, with entanglement assistance, is discussed. |
Plan Ahead
2021 IEEE International Symposium on Information Theory
11-16 July 2021 | Melbourne, Victoria, Australia