Technical Program

Paper Detail

Paper IDS.10.2
Paper Title A Local Characterization for Wyner Common Information
Authors Shao-Lun Huang, Tsinghua-Berkeley Shenzhen Institute, China; Xiangxiang Xu, Tsinghua University, China; Lizhong Zheng, Gregory W. Wornell, Massachusetts Institute of Technology, United States
Session S.10: Information Measures II
Presentation Lecture
Track Shannon Theory
Manuscript  Click here to download the manuscript
Virtual Presentation  Click here to watch in the Virtual Symposium
Abstract While the Hirschfeld-Gebelein-Rényi (HGR) maximal correlation and the Wyner common information share similar information processing purposes of extracting common knowledge structures between random variables, the relationships between these approaches are generally unclear. In this paper, we demonstrate such relationships by considering the Wyner common information in the weakly dependent regime, called ε-common information. We show that the HGR maximal correlation functions coincide with the relative likelihood functions of estimating the auxiliary random variables in ε-common information, which establishes the fundamental connections these approaches. Moreover, we extend the ε-common information to multiple random variables, and derive a novel algorithm for extracting feature functions of data variables regarding their common information. Our approach is validated by the MNIST problem, and can potentially be useful in multi-modal data analyses.

Plan Ahead


2021 IEEE International Symposium on Information Theory

11-16 July 2021 | Melbourne, Victoria, Australia

Visit Website!