Technical Program

Paper Detail

Paper IDD.1.3
Paper Title Heterogeneous Computation Assignments in Coded Elastic Computing
Authors Nicholas Woolsey, Rong-Rong Chen, Mingyue Ji, University of Utah, United States
Session D.1: Coded Computation
Presentation Lecture
Track Coded and Distributed Computation
Manuscript  Click here to download the manuscript
Virtual Presentation  Click here to watch in the Virtual Symposium
Abstract We study the optimal design of a heterogeneous coded elastic computing (CEC) network where machines have varying relative computation speeds. CEC introduced by Yang et al. is a framework which mitigates the impact of elastic events, where machines join and leave the network. A set of data is distributed among storage constrained machines using a Maximum Distance Separable (MDS) code such that any subset of machines of a specific size can perform the desired computations. This design eliminates the need to re-distribute the data after each elastic event. In this work, we develop a process for an arbitrary heterogeneous computing network to minimize the overall computation time by defining an optimal computation load, or number of computations assigned to each machine. We then present an algorithm to define a specific computation assignment among the machines that makes use of the MDS code and meets the optimal computation load.

Plan Ahead

IEEE ISIT 2021

2021 IEEE International Symposium on Information Theory

11-16 July 2021 | Melbourne, Victoria, Australia

Visit Website!