Paper ID | D.3.6 | ||
Paper Title | Entangled Polynomial Codes for Secure, Private, and Batch Distributed Matrix Multiplication: Breaking the ''Cubic'' Barrier | ||
Authors | Qian Yu, Salman Avestimehr, University of Southern California, United States | ||
Session | D.3: Distributed Matrix Multiplication | ||
Presentation | Lecture | ||
Track | Coded and Distributed Computation | ||
Manuscript | Click here to download the manuscript | ||
Virtual Presentation | Click here to watch in the Virtual Symposium | ||
Abstract | In distributed matrix multiplication, a common scenario is to assign each worker a fraction of the multiplication task, by partitioning the input matrices into smaller submatrices. In particular, by dividing two input matrices into $m$-by-$p$ and $p$-by-$n$ subblocks, a single multiplication task can be viewed as computing linear combinations of $pmn$ submatrix products, which can be assigned to $pmn$ workers. Such block-partitioning based designs have been widely studied under the topics of secure, private, and batch computation, where the state of the arts all require computing at least ``cubic'' ($pmn$) number of submatrix multiplications. Entangled polynomial codes, first presented for straggler mitigation, provides a powerful method for breaking the cubic barrier. It achieves a subcubic recovery threshold, meaning that the final product can be recovered from \emph{any} subset of multiplication results with a size order-wise smaller than $pmn$. In this work, we show that entangled polynomial codes can be further extended to also include these three important settings, and provide a unified framework that order-wise reduces the total computational costs upon the state of the arts by achieving subcubic recovery thresholds. |
Plan Ahead
2021 IEEE International Symposium on Information Theory
11-16 July 2021 | Melbourne, Victoria, Australia