Paper ID | C.2.6 | ||
Paper Title | Noise Recycling | ||
Authors | Alejandro Cohen, Amit Solomon, Massachusetts Institute of Technology, United States; Ken R. Duffy, Hamilton Institute, Maynooth University, Ireland; Muriel Médard, Massachusetts Institute of Technology, United States | ||
Session | C.2: Coding for Communications II | ||
Presentation | Lecture | ||
Track | Coding for Communications | ||
Manuscript | Click here to download the manuscript | ||
Virtual Presentation | Click here to watch in the Virtual Symposium | ||
Abstract | We introduce Noise Recycling, a method that enhances decoding performance of channels subject to correlated noise without joint decoding. The method can be used with any combination of codes, code-rates and decoding techniques. In the approach, a continuous realization of noise is estimated from a lead channel by subtracting its decoded output from its received signal. This estimate is then used to improve the accuracy of decoding of an orthogonal channel that is experiencing correlated noise. In this design, channels aid each other only through the provision of noise estimates post-decoding. In a Gauss-Markov model of correlated noise, we constructively establish that noise recycling employing a simple successive order enables higher rates than not recycling noise. Simulations illustrate noise recycling can be employed with any code and decoder, and that noise recycling shows Block Error Rate (BLER) benefits when applying the same predetermined order as used to enhance the rate region. Finally, for short codes we establish that an additional BLER improvement is possible through noise recycling with racing, where the lead channel is not pre-determined, but is chosen on the fly based on which decoder completes first. |
Plan Ahead
2021 IEEE International Symposium on Information Theory
11-16 July 2021 | Melbourne, Victoria, Australia