Technical Program

Paper Detail

Paper IDL.6.4
Paper Title Communication-Efficient Gradient Coding for Straggler Mitigation in Distributed Learning
Authors Swanand Kadhe, O. Ozan Koyluoglu, Kannan Ramchandran, University of California Berkeley, United States
Session L.6: Gradient-Based Distributed Learning
Presentation Lecture
Track Statistics and Learning Theory
Manuscript  Click here to download the manuscript
Virtual Presentation  Click here to watch in the Virtual Symposium
Abstract Distributed implementations of gradient-based methods, wherein a server distributes gradient computations across worker machines, need to overcome two limitations: delays caused by slow running machines called 'stragglers', and communication overheads. Recently, Ye and Abbe [ICML 2018] proposed a coding-theoretic paradigm to characterize a fundamental trade-off between computation load per worker, communication overhead per worker, and straggler tolerance. However, their proposed coding schemes suffer from heavy decoding complexity and poor numerical stability. In this paper, we develop a communication-efficient gradient coding framework to overcome these drawbacks. Our proposed framework enables using any linear code to design the encoding and decoding functions. When a particular code is used in this framework, its block-length determines the computation load, dimension determines the communication overhead, and minimum distance determines the straggler tolerance. The flexibility of choosing a code allows us to gracefully trade-off the straggler threshold and communication overhead for smaller decoding complexity and higher numerical stability. Further, we show that using a maximum distance separable (MDS) code generated by a random Gaussian matrix in our framework yields a gradient code that is optimal with respect to the trade-off and, in addition, satisfies stronger guarantees on numerical stability as compared to the previously proposed schemes. Finally, we evaluate our proposed framework on Amazon EC2, and demonstrate that it reduces the average iteration time by 16% as compared to prior gradient coding schemes.

Plan Ahead

IEEE ISIT 2021

2021 IEEE International Symposium on Information Theory

11-16 July 2021 | Melbourne, Victoria, Australia

Visit Website!