Technical Program

L.6: Gradient-Based Distributed Learning

Session Type: Lecture
Track: Statistics and Learning Theory
Virtual Session: View on Virtual Platform
Session Chair: Chao Tian, Texas A&M University
 
L.6.1: Hierarchical Coded Gradient Aggregation for Learning at the Edge
 Click here to download the manuscript
 Click here to view the Virtual Presentation
         Saurav Prakash; University of Southern California
         Amirhossein Reisizadeh; UC Santa Barbara
         Ramtin Pedarsani; UC Santa Barbara
         Amir Salman Avestimehr; University of Southern California
 
L.6.2: Numerically Stable Binary Gradient Coding
 Click here to download the manuscript
 Click here to view the Virtual Presentation
         Neophytos Charalambides; University of Michigan
         Hessam Mahdavifar; University of Michigan
         Alfred Hero; University of Michigan
 
L.6.3: On Byzantine-Resilient High-Dimensional Stochastic Gradient Descent
 Click here to download the manuscript
 Click here to view the Virtual Presentation
         Deepesh Data; University of California, Los Angeles
         Suhas Diggavi; University of California, Los Angeles
 
L.6.4: Communication-Efficient Gradient Coding for Straggler Mitigation in Distributed Learning
 Click here to download the manuscript
 Click here to view the Virtual Presentation
         Swanand Kadhe; University of California Berkeley
         O. Ozan Koyluoglu; University of California Berkeley
         Kannan Ramchandran; University of California Berkeley
 

Plan Ahead

IEEE ISIT 2021

2021 IEEE International Symposium on Information Theory

11-16 July 2021 | Melbourne, Victoria, Australia

Visit Website!